Spectral Clustering with Compressed, Incomplete and Inaccurate Measurements
نویسندگان
چکیده
Spectral clustering is one of the most widely used techniques for extracting the underlying global structure of a data set. Compressed sensing and matrix completion have emerged as prevailing methods for efficiently recovering sparse and partially observed signals respectively. We combine the distance preserving measurements of compressed sensing and matrix completion with the power of robust spectral clustering to show that spectral embeddings are preserved in the compressed domain and after matrix completion. Our analysis provides rigorous bounds on how small errors in the affinity matrix can affect the spectral coordinates and clusterability. This work generalizes the current perturbation results of two-class spectral clustering to incorporate multi-class clustering with k eigenvectors. We thoroughly track how small perturbation from using compressed sensing and matrix completion affect the affinity matrix and in succession the spectral coordinates. These perturbation results for multi-class clustering require an eigengap between the k and (k + 1) eigenvalues of the affinity matrix, which naturally occurs in data with k well-defined clusters. Our theoretical guarantees are complemented with numerical results along with a number of examples of the unsupervised organization and clustering of image data.
منابع مشابه
Performance Analysis of Spectral Clustering on Compressed, Incomplete and Inaccurate Measurements
Spectral clustering is one of the most widely used techniques for extracting the underlying global structure of a data set. Compressed sensing and matrix completion have emerged as prevailing methods for efficiently recovering sparse and partially observed signals respectively. We combine the distance preserving measurements of compressed sensing and matrix completion with the power of robust s...
متن کاملCompressive Spectral Clustering - Error Analysis
Compressive spectral clustering combines the distance preserving measurements of compressed sensing with the power of spectral clustering. Our analysis provides rigorous bounds on how small errors in the affinity matrix can affect the spectral coordinates and clusterability. This work generalizes the current perturbation results of two-class spectral clustering to incorporate multiclass cluster...
متن کاملCompressed sensing by inverse scale space and curvelet thresholding
Compressed sensing provides a new sampling theory for data acquisition, which says that compressible signals can be exactly reconstructed from highly incomplete sets of linear measurements. It is significant to many applications, e.g., medical imaging and remote sensing, especially for measurements limited by physical and physiological constraints, or extremely expensive. In this paper we propo...
متن کاملCompressive Spectral Clustering
Data mining has become one of the fastest growing research topics in mathematics and computer science. Data such as high dimensional signals, magnetic resonance images, and hyperspectral images can be costly to acquire or it could be unobtainable to make even simple direct comparisons. Compressed sensing is a technique that addresses this issue. It is used for exact recovery of sparse signals u...
متن کاملSignal recovery from incomplete and inaccurate measurements via ROMP
We demonstrate a simple greedy algorithm that can reliably recover a vector v ∈ R from incomplete and inaccurate measurements x = Φv + e. Here Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the gap between two major approaches to sparse recovery. It combines the speed and ease of implementation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011